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Abstract

For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur.
This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence
and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event
following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that
peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process.
Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II
(Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with
an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV
inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic
pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion
of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into
conserved features among the three classes of viral fusion proteins and offer direction for the future development of
broadly active fusion inhibitors.
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Introduction

Rift Valley fever (RVF) is a disease of major public health and

economic concern, affecting humans and livestock throughout

Africa [1–6] and the Arabian Peninsula [7]. The etiological agent

of this zoonosis, Rift Valley fever virus (RVFV), is an arbovirus

belonging to the Phlebovirus genus in the family Bunyaviridae. RVFV

infection is severe in animals, especially sheep, cattle, and goats,

resulting in high mortality rates in newborns and near 100%

abortion rates in pregnant animals. In humans, infection is usually

self-limiting, but a small percent of cases (1–2%) can progress to

severe hepatitis with hemorrhagic manifestations. In addition,

retinal inflammation can lead to permanent vision loss in about 1–

10% of infected patients [6].

Like other bunyaviruses, RVFV is an enveloped RNA virus

containing three genome segments. The large (L) segment encodes

the viral polymerase, the medium (M) segment the glycoproteins,

Gn and Gc, and two non-structural proteins, and the small (S)

segment the nucleocapsid protein, N, and the nonstructural

protein NSs. RVFV entry into permissive cells is mediated by Gn

and Gc, with Gc being a class II fusion protein [8,9] that uses a

low pH-dependent fusion mechanism following endocytosis [10].

While little is known about the fusion process of RVFV, the

functional aspects of other class II fusion proteins have been well

characterized [11]. For example, the flavivirus fusion protein, E,

binds to a cellular receptor, and the virus enters cells by

endocytosis. Acidification of endocytic vesicles results in a low-

pH dependent conformational shift in E, rearranging from a dimer

to a trimer [12] and inserting a previously hidden fusion peptide

into the target cellular membrane [13–16]. A second rearrange-

ment of the trimer pulls the viral and cellular membranes into

close proximity to allow membrane disruption and fusion to occur

[14]. Based on structural modeling, the hydrophobic residues of

the stem region N-terminal to the transmembrane domain of E

likely moves through a groove formed between domains II in the E

trimer during this second rearrangement; as the stem travels

through this groove, domain I remains (with the fusion loop

inserted into the endocytic membrane) while the C-terminus of

domain III is pulled toward the host membrane domain [13].

The large conformational rearrangements that take place

during the fusion process present potential opportunities to disrupt

early stages in viral replication and prevent a productive infection

[11,13]. Targeting this viral entry process with inhibitory peptides

has proven successful with multiple viruses including dengue virus

PLOS Neglected Tropical Diseases | www.plosntds.org 1 September 2013 | Volume 7 | Issue 9 | e2430



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
12 SEP 2013 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2013 to 00-00-2013  

4. TITLE AND SUBTITLE 
A Fusion-Inhibiting Peptide against Rift Valley Fever Virus Inhibits
Multiple, Diverse Viruses 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
US Army Medical Research and Materiel Command,DoD Biotechnology
High Performance Computing Software Applications
Institute,Telemedicine and Advanced Technology Research Center,Fort 
Detrick,MD,21702 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive
infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II,
and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein
Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing
the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem
region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that
infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II
(Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our
findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion
inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell
membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and
rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and
endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into
conserved features among the three classes of viral fusion proteins and offer direction for the future
development of broadly active fusion inhibitors. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

11 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 



Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



(DENV) [17–19], SARS coronavirus [20], and most notably,

HIV-1 [21,22]. The mechanism of action for various inhibitory

peptides appears to differ depending on the region of the fusion

protein used to design the peptide. For DENV, peptides analogous

to the hinge region of domain II or the beta sheet interaction

between domains I and II is thought to prematurely trigger a

rearrangement of the viral glycoproteins and thus interfere with

virion binding to the target cell [19]. In contrast, peptides

homologous to the hydrophobic DENV stem region of the fusion

protein interfere with fusion of the viral and cellular membranes

[18]. Data suggest that this stem peptide interferes with the

movement of the viral stem region along domain II, preventing the

two membranes from coming in close enough proximity to fuse

[18].

Another mechanism of entry inhibition was described for HIV-1

involving gp41 rearrangement in response to gp120 binding of

CD4 and either the co-receptor CCR5 or CXCR4. This

rearrangement exposes the C- and N-terminal heptad repeat

domains which, following the second gp41 rearrangement, form a

6-helix bundle in the post-fusion state [23]. Peptides analogous to

the C-terminal heptad repeat bind to the exposed N-terminal

heptad repeat when theses domains are exposed, preventing

completion of the second rearrangement and formation of the 6-

helix bundle [24].

In this report we describe the design and evaluation of peptides

based on RVFV’s fusion protein, Gc. We demonstrate that one of

the peptides has broad spectrum activity against viruses with Class

I, II, and III fusion mechanisms, and we present a model for the

potential mechanism of action of this peptide for inhibiting

infections.

Materials and Methods

Identification and synthesis of potential inhibitory
peptides

The RVFV Gc amino acid sequence (GenBank P03518) was

analyzed for a positive Wimley-White interfacial hydrophobicity

score (WWIHS), as previously described [17,20], using the

program Membrane Protein eXplorer [25]. Peptides were

generated based on a positive WWIHS and protein domain

consideration, and regions selected for peptide generation include

Gc domains IIa, IIb, III, and the stem region (Table 1). Control,

scrambled peptides (designated with a –sc) were generated by

randomly assigning amino acid positions for each amino acid in

the experimental peptide. Peptides were synthesized by a solid-

phase conventional N-a-9-flurenylmethyloxcarbonyl chemistry

and purified by reverse-phase high performance liquid chroma-

tography to greater than 95% purity (Bio-synthesis, Inc.,

Lewisville, TX). Lyophilized peptides were initially resuspended

in 1,1,1,3,3,3-hexafluoro-2-propanol (Sigma-Aldrich, St. Louis,

MO) overnight and dried in a vacuum centrifuge. Stock solutions

were generated by resuspending all peptides in 20–30% dimethyl

sulfoxide (DMSO) (Sigma-Aldrich, St. Louis, MO) and water (Life

Technologies, Grand Island, NY). Peptide concentrations were

determined by measuring the absorbance of aromatic amino acid

side chains at 280 nm using a Nanodrop spectrophotometer

(Thermo Scientific, Wilmington, DE). Working stocks of peptides

were generated by adding stock peptide to complete cell culture

medium (see below).

Viruses, cells, and media
RVFV vaccine strain MP12 [26,27], the wild-type RVFV-

ZH501 [4,28], ANDV 808034 [29], and a green-fluorescent

protein (GFP) tagged Zaire Ebolavirus, EboZ-eGFP [30,31] were

used in the assays. EboZ-eGFP was kindly provided by Dr.

Jonathan Towner, Centers for Disease Control and Prevention

(Atlanta, GA). These virus stocks are maintained at the U.S. Army

Medical Research Institute of Infectious Diseases (USAMRIID),

and IRB approval is not required for use. The pseudotyped viruses

RVF-VSV-luc and VSV-luc were kindly provided by Dr. Robert

Doms at the University of Pennsylvania (Wojcechowskyj et al.,

unpublished data). Vero E6 cells were maintained at 37uC with

5% CO2 in complete medium (cEMEM) consisting of Eagle’s

minimum essential medium (EMEM, Lonza, Basel, Switzerland)

supplemented with 10% (v/v) fetal bovine serum (Life Technol-

ogies, Grand Island, NY), 100 U/ml penicillin G (Life Technol-

ogies), and 100 mg/ml streptomycin (Life Technologies).

Virus inhibition assays
For the plaque-reduction assays, 6-well plates of confluent Vero

E6 cells were infected with 50–75 plaque forming units (pfu) of

virus that was pre-incubated with or without peptide in cEMEM

for 1 h at 37uC. Virus was allowed to adsorb for 1 h at 37uC after

which the monolayers were washed once with phosphate buffered

saline (PBS, Life Technologies, Grand Island, NY) and overlaid

with EBME (Life Technologies, Grand Island, NY) supplemented

with 10% FBS, 1% non-essential amino acids, 4% L-glutamine

(Life Technologies, Grand Island, NY), 100 U/ml penicillin G,

100 mg/ml streptomycin, and 16 Fungizone (Life Technologies,

Grand Island, NY) containing 0.6% (w/v) SeaKem ME agarose

Table 1. Peptide amino acid sequences analogous to the
domain and location within RVFV Gc.

peptide amino acid sequence domain location

RVFV-1 YWTGSISPKCLSSRRCHLV IIa 72–90

RVFV-2 WGCGCFNVNPSCLFVHTYL IIa (fusion peptide) 131–149

RVFV-3 LGASSSRFTNWGSVSLSLD IIb 185–203

RVFV-4 FVGAAVSCDAAFLNLTGCY III 332–350

RVFV-5 WNFFDWFSGLMSWFGGPLKLY stem 450–470

RVFV-6 WNFFDWFSGLMSWFGGPLK stem 450–468

RVFV-7 WNFFDWFSGLMSWFGGPLKTI stem 450–470

RVFV-8 SWNFFDWFSGLMSWFGGPLK stem 449–468

RVFV-9 SGSWNFFDWFSGLMSWFGG stem 447–465

RVFV-10 SGSWNFFDWFSGLMSWFGGPL stem 447–467

RVFV-6sc MFLGWSFDFGSLWGNKPWF stem 450–468

RVFV-10sc WSSGLPFGNFGLSWFDMGFWS stem 447–467

doi:10.1371/journal.pntd.0002430.t001

Author Summary

Entry into a cell is an essential stage of the viral replication
cycle. Enveloped viruses require fusion of viral and cellular
membranes for the viral genome to enter the cell
cytoplasm. This entry is mediated by a viral fusion protein.
Here, we synthesized peptides based on the Rift Valley
fever virus (RVFV) fusion protein stem region and tested
the peptides for their ability to prevent RVFV infection of
cell cultures. We found that one of these peptides was able
to inhibit RVFV infectivity by preventing the fusion process
and that this peptide had broad activity against other RNA
viruses including Ebola, Andes, and vesicular stomatitis
viruses.

Viral Fusion Peptide Inhibitors
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(Lonza, Basel, Switzerland). Cells were incubated at 37uC with 5%

(v/v) CO2 for 3 days (RVFV) or 7 days (ANDV), and a secondary

overlay containing EBME supplemented with 10% FBS, 100 U/

ml penicillin G, 100 mg/ml streptomycin, 16Fungizone, and 5%

neutral red (Life Technologies, Grand Island, NY) was added.

Plaques were subsequently counted over 2 days starting the

following day for RVFV and 3 days following the addition of the

secondary overlay for ANDV.

For the EboZ-eGFP and pseudotyped infections, signal-

optimized concentrations of virus [31] were incubated with a

dilution series of each peptide diluted in cEMEM. After a 1 h

incubation, media were removed from the 96-well plates of

confluent Vero E6 cells, and virus/peptide was added to triplicate

wells. After a 1 h incubation, the inocula were removed, the cells

washed once with PBS, and fresh media added. For EboZ-eGFP,

levels of GFP were measured 48 h after-infection. For the

pseudotyped viruses, luciferase activity was measured the following

day using the Renilla Luciferase Assay System (Promega, Madison,

WI) according to the manufacturer’s instructions.

MTT toxicity assay
Peptide toxicity was assessed using the MTT cell proliferation

assay (ATCC, Manassas, VA) according to the manufacturer’s

instructions. Briefly, Vero E6 cells were incubated with 100 ml

cEMEM containing each peptide for approximately 18 h before

the addition of tetrazolium salt (MTT). This salt is reduced in

metabolically active cells, forming crystals which are solubilized by

detergent. Absorbance was read at 570 nm with a 96-well plate

spectrophotometer (Promega/Turner Biosystems, Madison, WI).

Peptide-cell binding assays
To assess peptide binding to cells, a C-terminal biotin

conjugated RVFV-6 peptide and a biotin-conjugated RVFV-6

scrambled peptide were synthesized (Bio-synthesis, Inc., Lewisville,

TX). An immunofluorescence assay was developed to detect

peptide binding to Vero E6 cells. Cells were transfected with a

plasmid containing a codon-optimized RVFV-ZH548 GnGc

expression construct. Cells were incubated with 25 mM peptide

in chamber slides for either 30 seconds or 1 h. Following a 1 hour

incubation, cells were washed extensively with PBS before fixing in

10% buffered formalin (Fisher Scientific, Pittsburg, PA) for

15 min. An anti-biotin antibody conjugated to a Texas Red

fluorophore (Abcam, Cambridge, MA) was incubated with the

cells for 1 h. After washing with PBS, cells were mounted with a

DAPI-containing mounting medium (Life Technologies, Grand

Island, NY) and observed under a microscope. Pictures were taken

and merged to depict peptide binding (red) and nuclei (blue).

Electron microscopy was conducted to visualize peptide binding

to Vero E6 cells treated with and without RVFV-6 peptide. For

immunogold labeling, cell monolayers were briefly pre-fixed in

0.2% paraformaldehyde (E.M. Sciences, Warrenton, PA) at room

temperature. After this brief fixation, the cells were washed in PBS

and incubated with goat anti-biotin 15 nm IgG Gold antibody

(Ted Pella, Redding, CA) for 2 h at room temperature. After the

wash steps, the attached cells were fixed in with 2.5% glutaral-

dehyde (E.M. Sciences), scraped, and pelleted by centrifugation.

Cell pellets were minced into small pieces, washed in Millonig’s

sodium phosphate buffer (Tousimis Research, Rockville, MD),

and stored overnight at 4uC. The samples were then post-fixed in

1.0% osmium tetroxide (E.M. Sciences), en bloc stained with 2.0%

aqueous uranyl acetate, dehydrated in a series of graded ethanols,

and infiltrated and embedded in DER 736 plastic resin (Tousimis

Research). After polymerization for 48 h at 70uC, blocks from

each sample were ultra-thin sectioned using Leica UC7 Ultrami-

crotome (Leica Microsystems, Buffalo Grove, IL). Thin sections 60

to 80 nm in thickness were collected from each sample and

mounted onto 300 mesh copper grids. The grids from each

sectioned block were then post-stained with Reynold’s lead citrate

and subsequently viewed in a Tecnai Spirit Twin transmission

electron microscope, operating at 80 kV.

Peptide-virion binding assay
In order to address the mechanics of peptide inhibition of the

virus, a binding assay was developed. Twenty-five ml biotin-

conjugated RVFV-6 or biotin-conjugated RVFV-6 scrambled

peptide was incubated with streptavidin magnetic beads (Life

Technologies, Grand Island, NY). After peptide binding to the

beads, unbound peptide was washed away with Tris-buffered

saline (TBS, Sigma-Aldrich, St. Louis, MO). RVFV-MP12 diluted

in cEMEM was added to the beads for 1 h at 37uC, allowing for

peptide-virion binding. After the 1 h, the beads were washed with

Tris-buffered saline (TBS) and treated in one of three conditions:

1) virus bound to beads were lysed using 1% Triton X-100 (Sigma-

Aldrich, St. Louis, MO), 2) virus bound to the beads were treated

with Earl’s salt solution containing 20 mM HEPES and 20 mM

MES, pH 5.2 (low pH medium) for 15 min to trigger pH-induced

glycoprotein rearrangements prior to being lysed, or 3) virus was

not pH treated and not lysed. The magnetic beads were washed

with TBS (or low pH medium for the pH treated beads) to remove

unbound virus, and SDS-PAGE loading buffer (Life Technologies,

Grand Island, NY) was added to the beads. After a 5 min

incubation at 70uC, samples were resolved on a SDS-PAGE gel.

The resolved proteins were transferred to a nitrocellulose blot,

blocked with 5% Difco (Becton-Dickenson, Franklin Lakes, NJ) in

PBS (block), and incubated with a 1:1000 dilution in block of the

mouse anti-RVFV Gc antibody 4D4 [32]. After three washes with

PBS containing 0.05% Tween-20 (PBST, Sigma-Aldrich, St.

Louis, MO), a secondary horse radish peroxidase conjugated goat

anti-mouse antibody (Santa Cruz Biotechnology, Santa Cruz, CA)

diluted 1:2500 dilution in block was added for 1 h. The blot was

washed in PBST and imaged using a camera system (G-box,

Syngene, Frederick, MD).

Virion-cell binding assay
A probe-based, real-time RT-PCR assay was used as previously

described for RVFV [33] and EBOV [34] to detect the relative

amount of virus present in a sample. Two dilutions of RVFV or

EboZ-eGFP, 104 and 105 pfu) were pre-treated with 25 mM

peptide for 1 h before infecting a monolayer of Vero E6 cells. One

hour post-infection, cells were washed extensively with phosphate

buffered saline (PBS) to remove unbound virus, and total RNA

was extracted using TRIzol (Life Technologies, Grand Island, NY)

according to the manufacturer’s instructions. Equal amounts of

RNA were used in the real-time RT-PCR assay as previously

described using the Power SYBR Green RNA-to-Ct 1-Step Kit

(Applied Biosystems/Life Technologies, Grand Island, NY) on a

Bio-Rad CFX96 real-time instrument (Bio-Rad, Hercules, CA).

Cell-cell fusion assay
A plasmid based cell-cell fusion assay was developed similar to

the alphavirus replicon-based system described previously [10] to

assess if RVFV-6 inhibits the fusion process. Codon-optimized

RVFV-ZH548 glycoproteins GnGc as well as codon-optimized T7

polymerase were previously cloned into the mammalian dual-

expression vector pBud-CE4.1 (Life Technologies, Grand Island,

NY) to create the plasmid pBud-CE4.1-RVFV548-GnGc-T7-opti.

Vero E6 cells in a 6-well plate were transfected using Fugene HD

Transfection Reagent (Promega, Madison, WI) with pBud-CE4.1-

Viral Fusion Peptide Inhibitors
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RVFV548-GnGc-T7-opti or a mammalian expression plasmid

containing a VSV G expression cassette (pVSV-G), kindly

provided by Dr. Robert Doms. Approximately 18 h later, the

transfected cells were harvested using trypsin/EDTA (Life

Technologies, Grand Island, NY) and seeded onto wells of an 8-

well chamber slide (Lab-Tek II chamber slide RS, Thermo

Scientific, Wilmington, DE). The cells transfected with pBud-

CE4.1-RVFV548-GnGc-T7-opti were seeded at 16105 cells/well.

Cells transfected with pVSV-G were seeded at 1.256104 cells/

well, and untransfected cells were added to bring the final

concentration to 16105 cells/well. Twenty-four h later, the media

were exchanged with cEMEM with or without diluted peptide.

Following a 1 hour incubation at 37uC, the cells were treated at

low-pH for 15 min with low pH medium. EMEM was added to

the wells to raise the pH, and the slides were incubated at 37uC
with 5% CO2. Five h later, cells were fixed for 7 min with ice-cold

methanol and air dried. Cells were stained for 15 min with a 1:10

dilution of freshly prepared Giemsa stain (Promega, Madison, WI)

in water. Slides were air dried, mounted with a DAPI-containing

mounting medium, and were observed under a microscope.

Statistical significance for differences between the peptide treated

and untreated control was determined using a paired, two-tailed t-

test using Prism 5 (GraphPad Software, La Jolla, CA).

Structural models of the envelope proteins
Generation of the 3-D models for the RVFV, VSV, and EBOV

fusion proteins from their sequences was carried out by using the

Protein Structure Prediction Pipeline (PSPP) [35]. The PSPP uses

the program NEST [36] for generating homology models. Two

data inputs were used to produce such models: (a) templates and

(b) pair-wise alignments. The template files from the experimen-

tally determined structures of glycoprotein C from RVFV [37]

(PDB code 4HJC), Semliki Forest virus [38] (PDB code: 1RER)

and Venezuelan equine encephalitis virus (VEEV) [39] (PDB code

3J0C) were used to generate models for RVFV; VSV structure

(PDB code:2CMZ) [40] was used to generate a complete VSV

model of the fusion trimer; and the structures of Zaire Ebola virus

(PDB codes: 2EBO [41] and 3CSY [42]) were used to generate a

complete model for the GP2 fusion trimer of EBOV. All

experimental structures were obtained from the Protein Data

Bank (PDB) [43]. Regions of the models for which structural

information was not available were built de novo based on

secondary structure information. Analysis of the final structures

was performed with the help of PyMOL Molecular Graphics

System (pymol.org)

Results

Design of membrane-interacting peptides
RVFV Gc amino acid sequence was analyzed to identify regions

of the predicted protein having a positive Wimley-White

interfacial hydrophobicity score (WWIHS), indicating a potential

to interact with lipid bilayers [25]. Five non-transmembrane

domain regions within RVFV Gc were found with significant

WWIHS values, and peptides analogous to these five regions were

synthesized (RVFV-1, -2, -3, -4, -5; Table 1).

Identification of inhibitory peptides against RVFV
The initial five RVFV synthetic peptides were evaluated for

inhibition of RVFV-MP12 using a plaque-reduction assay. Only

RVFV-5 demonstrated inhibition (approximately 30%, data not

shown). This peptide is based on the RVFV fusion protein Gc’s

stem region (amino acids 449–468 of RVFV Gc) N-terminal to the

transmembrane domain. Consequently, additional peptides based

on RVFV-5 were designed and synthesized, adding or subtracting

amino acids from the N- and C-termini of the RVFV-5 peptide

analogous region in the pathogenic RVFV-ZH501 viral fusion

protein (VFP) stem (GenBank DQ380202). This region included

two different amino acids at the C-terminus (Table 1, see RVFV-5

and RVFV-7), and RVFV-8 is analogous to the likely stem

sequence (Table 1). These new peptides (RVFV-6, -7, -8, -9, -10,

Table 1) were assayed for inhibition using a pseudotyped reporter

assay consisting of either a RVFV-pseudotyped VSV-luc reporter

virus or a VSV-luc reporter virus. For each virus, the VSV core is

tagged with the reporter gene luciferase, and the envelope is

composed of either the RVFV glycoproteins Gn and Gc or the

VSV G glycoprotein. Each virus was incubated with either 50 mM

or 25 mM of each peptide before infecting a monolayer of Vero E6

cells, and luciferase activity was measured as a surrogate for viral

replication. Interestingly, all of the peptides inhibited both RVF-

VSV-luc and the VSV-luc viruses (Figure 1A and B). Inhibition of

VSV-luc was unexpected since the VSV G protein is likely a class

III fusion protein [40,44].

RVFV-6 was selected for further evaluation since RVFV-6 was

the strongest inhibitor of both viruses. RVFV-10 was also selected

for further evaluation based on the amino acid sequence

differences with RVFV-6 and the other peptides (Table 1).

Scrambled peptides were made for RVFV-6 and RVFV-10,

designated RVFV-6sc and RVFV-10sc (Table 1), by randomly

ordering the component amino acids. Inhibition assays were

conducted with serial dilutions of the peptides, and luciferase

activity was measured (Figure 1C and D). RVFV-6 was the more

potent inhibitor of both RVF-VSV-luc and VSV-luc, and the

scrambled peptides did not demonstrate inhibition of either virus.

In order to confirm the inhibition observed with the

pseudotyped viruses, RVFV-6 and RVFV-10 were also tested

for inhibition of a pathogenic strain of RVFV, RVFV-ZH501,

using a plaque-reduction assay. Both RVFV-6 and RVFV-10

strongly inhibited RVFV-ZH501. While RVFV-6sc did not inhibit

RVFV-ZH501, RVFV-10sc did (Figure 2A).

RVFV-6 inhibits additional, diverse viruses
Because both RVFV-6 and RVFV-10 inhibited VSV-luc, we

conducted inhibition assays with two other viruses: another

member of the Bunyaviridae family from a different genus, the

hantavirus ANDV, which is also predicted to use class II fusion

[45], and a member of the Filoviridae family, Ebola virus (EBOV),

which has a class I fusion protein [41,46]. A GFP-tagged EBOV

Zaire, EboZ-eGFP, and ANDV were incubated with serial

dilutions of RVFV-6, RVFV-10, or the scrambled peptides

RVFV-6sc and RVFV-10sc. While both RVFV-6 and, to a lesser

extent RVFV-10, inhibited EBOV, only RVFV-6 (Figure 2B and

C) strongly inhibited ANDV with nearly 100% reduction in

plaques at a 50 mM peptide concentration. Since RVFV-6

inhibited RVFV-ZH501 similar to RVFV-10 (Figure 2A) but

inhibited the other viruses (RVF-VSV-luc, VSV-luc, ANDV, and

EBOV) better than RVFV-10, RVFV-6 was selected for the

subsequent studies. We further evaluated RVFV-6 for inhibition

against the alphaviruses Venezuelan (VEEV), western (WEEV),

and eastern (EEEV) equine encephalitis viruses using a plaque-

reduction assay. No inhibition was observed when using the

peptide at 50 mM peptide concentrations for any of these viruses

(data not shown).

To rule out the possibility that the decreased virus infectivity

was due to peptide toxicity on the Vero E6 cells, we performed a

MTT toxicity assay as described in Materials and Methods.

Neither RVFV-6 nor RVFV-6sc reduced Vero E6 cell viability at

peptide concentrations up to 50 mM (Figure 2D).
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RVFV-6 does not interfere with virion-cell binding
Because RVFV-6 potently inhibited three diverse viruses that

utilize varying fusion mechanisms, we wanted to determine if the

peptide was preventing the viruses from binding to permissive cells

as has been previously reported for DENV [47]. To evaluate this,

RVFV-MP12, which is also inhibited by RVFV-6 (data not

shown), or EboZ-eGFP were incubated with or without RVFV-6

prior to addition to Vero E6 cells. Cells were washed with PBS to

remove unbound virions, and real-time PCR assays for RVFV

[33] or EBOV [34] were used to quantify viral genomes present. If

RVFV-6 prevented the viruses from binding to permissive cells, we

would expect less viral RNA in RVFV-6 treated cells as compared

to untreated cells. For both RVFV and EBOV, there was no

measureable difference in the amount of RNA detected in treated

and untreated cells (Figure 3), indicating that the peptide did not

interfere with viral binding to the target cell.

RVFV-6 binds to cell membranes nonspecifically but
binds specifically to Gc after low pH-triggered
rearrangement

Since RVFV-6 did not interfere with the virus binding to

permissive cells, inhibition must have occurred at a later stage of

viral entry. To determine if RVFV-6 specifically interacted with

RVFV envelope proteins, we transfected cells with a plasmid

expressing the RVFV M segment and incubated the cells with

either biotin-conjugated RVFV-6 or biotin-conjugated RVFV-6sc.

Control cells were mock-transfected. After staining with an anti-

biotin antibody, we found that RVFV-6 bound to Vero E6 cells

independent of GnGc expression while RVFV-6sc did not bind to

either transfected or control cells (Figure 4). The RVFV-6 peptide

binding was rapid and could be detected at the earliest measured

time (30 seconds, data not shown). The binding could also be

visualized by electron microscopy of cells incubated with

biotinylated RVFV-6 prior to fixing and staining, with the peptide

appearing to form aggregates on the cell surface (Figure S1). These

results suggest that the RVFV-6 peptide binds non-specifically to

the plasma membrane.

Like many enveloped viruses, the RVFV genome gains entry to

a host cell’s cytosol through a pH-dependent fusion of viral and

host cell membranes [10]. To determine if the RVFV-6 peptide

binds to RVFV at either neutral or low pH conditions such as

would be observed during endocytosis, we performed immune-

precipitation assays of RVFV-MP12 using biotinylated peptides

bound to streptavidin beads. After washing, bound proteins were

resolved by SDS-PAGE, and western blots were probed with a

monoclonal antibody to Gc. When the immune precipitations

were carried out at neutral pH, RVFV-6 and to a lesser extent

RVFV-6sc, were found to precipitate Gc (Figure 5); however, in

the presence of the non-ionic detergent Triton-X, which will

solubilize the viral membrane, Gc was not precipitated. These

results suggest that RVFV-6 did not bind to Gc directly. In

contrast, when the same experiment was performed at low pH

(pH 5.2), which is expected to trigger the Gc fusion mechanism,

Gc was detected in the presence of Triton X (Figure 5). A lesser

amount of binding was observed with the scrambled peptide,

possibly due to the hydrophobic nature of the amino acids,

suggesting that the amino acid order of the peptide by itself plays a

role in the binding. As described in the Discussion, our data

Figure 1. Stem-based peptides inhibit both RVFV and VSV. Peptides were screened for inhibition of the pseudotyped reporter viruses RVF-
VSV-luc (A and C) and VSV-luc (B and D). Virus was incubated with peptide RVFV-6, -7, -8, -9, or -10 (A, B) or serial dilutions of RVFV-6, RVFV-10, or the
scrambled peptides RVFV-6sc or RVFV-10sc (C, D) prior to infecting a monolayer of Vero E6 cells. Luciferase activity (RLU) was measured
approximately 18 h later. Percent inhibition was calculated based on the virus-only controls. Error shown is the standard deviation of the mean. Data
are representative of at least 2 experiments.
doi:10.1371/journal.pntd.0002430.g001
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suggest a two-step mechanism for fusion inhibition like that

reported earlier for DENV [18] in which the RVFV-6 peptide

associates with the virion independent of Gc initially (e.g., binds to

the viral membrane) but then specifically binds to Gc following the

rearrangement in Gc triggered by the low pH treatment.

RVFV-6 inhibits RVFV and VSV fusion
Because RVFV-6 binds to Gc following low pH-induced

structural rearrangements, we expected that its mechanism of

action was indeed inhibition of viral fusion. To confirm this, we

developed cell-cell fusion assays for both RVFV and VSV in which

Vero E6 cells were transfected with plasmids expressing either the

genes for RVFV GnGc or for VSV G. When these transfected

cells were subjected to low pH treatment, the cells fused, forming

syncytia (Figure 6A). However, if the cells were incubated with

RVFV-6 and then subjected to low pH, the cell-cell fusion was

significantly inhibited for both RVFV (p,0.0001) and VSV

(p = 0.001) transfected cells (Figure 6A and B).

Figure 2. Further characterization of the RVFV stem peptides show broad, non-toxic viral inhibition. Serial dilutions of peptide were
incubated with RVFV-ZH501 (A), EboZ-eGFP (B), or ANDV (C), before infecting a monolayer of Vero E6 cells. Percent inhibition was determined for
each virus using virus-only controls. (D) MTT toxicity assay results after overnight incubation of Vero E6 cells with RVFV-6 or RVFV-6sc peptides.
Absorbance was measured approximately 18 h after adding the diluted peptide in triplicate. The dashed line in (D) represents the average signal
generated by the mock treated control cells. Error shown is the standard deviation of the mean. Data are representative of at least 2 experiments.
doi:10.1371/journal.pntd.0002430.g002

Figure 3. RVFV-6 does not prevent virus from binding to cells. RVFV-MP12 (A) or EboZ-eGFP (B) was incubated with 50 mM RVFV-6 prior to
the addition to a confluent monolayer of Vero E6 cells. After a 1 h adsorption, cells were rinsed with PBS, and RNA was harvested using TRIzol. Real
time RT-PCR was conducted in triplicate to quantify the relative amount of viral RNA bound to cells, and results are combined from duplicate
experiments. NTC is the no template control, PC (positive control) is RNA purified from either RVFV-MP12 or EboZ-eGFP. Untreated virus was mock
treated without peptide. Error shown is the standard deviation of the mean.
doi:10.1371/journal.pntd.0002430.g003
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Structural modeling
To gain some insight into the mechanism by which RVFV-6 is

able to inhibit fusion processes mediated by three classes of fusion

proteins, we applied molecular modeling techniques. As explained

in Materials and Methods, full models for the fusion trimers of

VSV G (Figure S2), EBOV GP2 (Figure S3), and RVFV Gc

(Figure S4) were built combining homology modeling, fold

recognition, and ab initio techniques. All three models show

hydrophobic patches located near the fusion loops and at the

interface between monomers that can serve as the stem binding

sites. The content of aromatic residues at these sites is also high,

consistent with the large number of aromatic residues in RVFV-6

and the identified stem regions in RVFV Gc, EBOV GP2, and

VSV G proteins.

Since the RVFV-6sc peptide did unexpectedly bind to RVFV

Gc in the immune-precipitation assay (Figure 5), structural analysis

of the RVFV-6sc was also conducted (Figure S5). While the amino

acids for this peptide were selected at random, the aromatic

peptides of RVFV-6sc were distributed across the peptide such

that there was an aromatic face (though not clustered at one

terminus as with RVFV-6) that could still be capable of interacting

with the hydrophobic groove exposed in the fusion protein during

low-pH mediated conformational rearrangements. More of the

hydrophobic residues (colored grey) are on the hydrophilic face of

the peptide, and this could negatively impact membrane binding

(reflected in Figures 4 and 5). This decreased membrane binding

strength would have impacted the scrambled peptide’s availability

in the endosomal compartment and would explain the limited

impact on infectivity.

Discussion

In this report, we showed that a peptide (RVFV-6) analogous to

the stem region of the putative fusion protein Gc of RVFV is

capable of inhibiting multiple, diverse viruses in addition to

RVFV. We conducted a series of studies to determine RVFV-6’s

mechanism of action. We demonstrated that the peptide 1) does

not prevent virion binding to permissive cells; 2) binds to cells and

virions independent of fusion protein binding; 3) binds to Gc

following acidification; and 4) prevents viral fusion.

Based on these findings and those of others, we propose that

RVFV-6 prevents infection by first attaching to the viral and

cellular membranes (see Figure 7A–C), likely due to interaction

between the hydrophobic and aromatic residues of the peptide and

the viral/cellular membranes. This binding would serve to both

concentrate the peptide at the initial site of infection and also

permit it to be internalized in concert with the virion. After

internalization, the low pH environment of the endosome triggers

a conformational rearrangement of Gc that exposes a previously

hidden stem domain that is thought to interact with a ‘‘groove’’ on

the low pH form of the glycoprotein, facilitating apposition of the

virion and cell membranes. RVFV-6, analogous to the RVFV

stem, may interact with this groove, preventing insertion of the

stem and thereby blocking interactions between the virion and cell

membranes (Figure 7B–C). A similar multistep mechanism has

previously been proposed for potent peptides derived from the

DENV E stem [48]. This stem-based mechanism is not universal,

however, as one stem-based peptide inhibitor of DENV, DN59,

can induce the formation of holes in the viral membrane,

triggering premature release of the genome that causes the viral

particles to become non-infectious even before interacting with

cells [49]. Several interesting questions remain, including where on

Figure 4. RVFV-6 binds to cells independent of RVFV GnGc expression. Vero E6 cells were transfected with a plasmid expressing RVFV GnGc.
Forty-eight h later, either the biotin-labeled RVFV-6 peptide or the biotin-labeled RVFV-6sc peptide was added to the cells followed by washing with
PBS. Cells were fixed, and peptide binding was identified using an anti-biotin antibody conjugated to Texas Red. Nuclei were stained with DAPI (blue).
doi:10.1371/journal.pntd.0002430.g004

Figure 5. Activation of the viral fusion process is required for
RVFV-6 binding to RVFV Gc. Biotin-conjugated RVFV-6, RVFV-6sc, or
no peptide was pre-bound to avidin beads before the addition of RVFV-
MP12. Beads were washed to remove unbound virus and treated as
indicated with 1) lysis buffer and wash, 2) pH 5.2 treatment followed by
lysis buffer and wash, or 3) no pH 5.2 treatment and no lysis buffer.
Protein bound to the avidin beads were resolved by SDS-PAGE and
probed with the anti-RVFV Gc antibody 4D4. Data represent at least 3
separate experiments.
doi:10.1371/journal.pntd.0002430.g005
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the fusion protein RVFV-6 binds and if the peptide’s binding is

reversible.

Because we designed peptides specifically against the RVFV

stem region, we expected the fusion peptides to only inhibit RVFV

or closely related viruses by binding to the complementary region

in domain II of the fusion protein during low pH-mediated

rearrangement. Thus, we were initially surprised to discover that

RVFV-6 not only inhibited RVFV infection but also inhibited

Figure 6. RVFV-6 inhibits both RVFV and VSV cell:cell fusion. Vero E6 cells were transfected with an expression plasmid expressing either the
RVFV GnGc or VSV G. Twenty-four h later, cells were harvested and seeded into chamber slides. Eighteen h later, cells were incubated for 1 h with
50 mM RVFV-6 peptide followed by a pH 5.2 treatment. Medium was added to raise the pH, and slides were incubated for 5 h prior to methanol fixing
and Giemsa staining. Fusion events (indicated with arrows) are shown in (A) and were quantified by number of syncytia per field of view at 1006 in
(B). Statistical significance was assessed by a paired, two-tailed t test. * (p = 0.001); ** (p,0.0001). Results are representative of at least 3 experiments.
doi:10.1371/journal.pntd.0002430.g006

Figure 7. Molecular hypothesis of RVFV-6 mechanism of action. Panel A shows the initial stages of the membrane fusion process in
bunyaviruses (adapted from [8]). Receptor-binding triggers uptake of virions by endocytosis. Acidification of the endocytic vesicle likely initiates Gn/
Gc dissociation. Conformational rearrangements of domains I and II in Gc lead to trimer formation and insertion of the fusion peptide into the
endosomal vesicle membrane. Trimer formation exposes the stem binding sites (shown in black) with affinity for the Gc stem and RVFV-6. The main
molecular elements involved are: (I) glycoprotein Gc having four main components including [a] domains DI, DII, and DIII shown in green, orange/
yellow, and blue, respectively; [b] the fusion loop shown in red; [c] the stem shown as small red cylinders; and [d] the transmembrane domains shown
as a magenta cylinder; (II) the glycoprotein Gn, depicted as the receptor-binding protein of bunyaviruses, colored pink; and (III) host-cell receptors,
shown in light-blue. Panel B: Zippering action: After acidification of the endocytic vesicle, the stem regions relocate, moving towards the host
membrane through a zippering reaction. Docking of the stems into the stem binding sites is an essential step of membrane fusion that leads to
opening of a pore or channel. RVFV-6 blocking: RVFV-6 molecules, shown as green cylinders, outcompete the stem fragment and lead to inhibition of
fusion by blocking the movement of the native stem. Panel C: Molecular model of the RVFV Gc trimer complex. A molecular surface is used to
highlight the three domains of the protein (colored as indicated in A). The stem fragments are shown as a red a-helices docked into the stem binding
sites (black surface areas), and stem residues are highlighted using a stick representation.
doi:10.1371/journal.pntd.0002430.g007
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infection of other viruses including an unrelated bunyavirus

(ANDV), a filovirus (EBOV) which uses a class I fusion protein,

and a rhabdovirus (VSV) using a class III fusion protein. Structural

modeling incorporating known features of various viral fusion

proteins provided clues as to why this might occur: despite the

differences in viral fusion protein class, all of the viral glycoproteins

studied display similar structures in their membrane proximal

regions (MPER) that can be modeled as highly amphipathic a-

helices (Figure S5).

Our results with RVFV-6 inhibition are consistent with those

from a recent mutagenesis analysis [50] which indicates that the

stem region of flaviviruses interacts with a patch that forms a

pocket in the DII domain of the E protein during initiation of the

so-called zippering reaction. We believe that RVFV-6 can

similarly interfere with such a zippering reaction, and we further

postulate that such a mechanism (Figure 7) could be used by all the

three classes of fusion proteins. We have generated 3-dimensional

models of complete fusion trimers for RVFV, VSV, and EBOV in

an attempt to identify the putative sites where RVFV-6 can dock.

Supplementary Figures S2, S3, S4 highlight what we consider the

most probable regions where the stems and the inhibitor RVFV-6

could bind in RVFV, VSV, and EBOV trimers. Therefore, it is

possible that the RVFV-6 peptide binds to virion and cell

membranes and traffics with the EBOV, ANDV, or VSV virions

in endosomes in a similar manner as with RVFV. It is also possible

that RVFV-6 could also block the functions of the structurally

homologous regions of the ANDV, EBOV, and VSV fusion

proteins following acidification and protein rearrangement, thus

preventing successful fusion in the same manner as described for

RVFV fusion (Figure 7). Indeed, we demonstrate that RVFV-6 does

prevent VSV fusion using a cell:cell fusion assay. However, further

experimental studies would be required to confirm our modeling

and proposed mechanism, including determining if RVFV-6 does

indeed bind to these viruses’ fusion proteins following acidification

and if RVFV-6 does prevent successful fusion of ANDV and

EBOV. As such, we cannot rule out other potential mechanisms of

action such as disruption and distortion of the viral or cellular

membranes so that efficient viral entry is limited.

RVFV-6 did not show any inhibition of the alphaviruses VEEV,

EEEV, or WEEV (which use class II fusion proteins) at high

concentrations of peptide (50 mM). Similarly, the stem-based

inhibitor DN59, which inhibits DENV and other flaviviruses

[17,49], did not inhibit the alphavirus Sindbis virus [17]. Taken

together, these findings were initially confusing given the enhanced

alphavirus inhibition observed when the stem is included with

exogenous domain III [51] and the critical role the fusion protein

stem plays in driving viral fusion of other viruses [11,50]. Liao and

Kielian found that, for the alphavirus Semliki Forest virus (SFV),

the shorter (compared to flaviviruses) VFP stem had a minimal

role in driving fusion but a critical role in virion assembly [52],

suggesting that the domain III:trimer core interaction provides the

primary force for SFV fusion. Conversely for flavivirus fusion, the

stem:domain II groove interactions and zippering are crucial for

efficient fusion [11,50] and could be why stem-based peptides are

capable of inhibiting viral infectivity.

In summary, we have identified a stem-based peptide that

prevents viral fusion and infectivity by diverse viruses that utilize

all three classes of viral fusion proteins. To our knowledge, this is

the first description of a stem-based peptide that impacts infectivity

of viruses that utilize three different classes of viral fusion proteins.

Our findings are novel in that we have identified a potentially

conserved feature of these three classes of fusion proteins that can

be exploited for the development of broadly active antiviral fusion

inhibitors. In addition, RVFV-6 and similar peptides could be

used in competitive binding assays to identify broadly reactive

small molecule drugs that could also block infectivity, expanding

the utility of these peptides for therapeutics development.

Supporting Information

Figure S1 RVFV-6 binds to cells independent of RVFV
fusion protein surface expression. Vero E6 cells were

incubated with biotin-conjugated RVFV-6 and stained with a

gold-conjugated anti-biotin antibody. Transmission electron

microscopy was conducted to visualize peptide location on the

cell surface (arrows).

(TIF)

Figure S2 Structural modeling of the VSV fusion trimer.
(A) Model of a complete fusion trimer of VSV generated from the

available X-ray structure 2CMZ. The yellow box highlights the

proposed docking site for the VSV stem. (B) Enhanced view of the

region highlighted in panel A, showing a superposition of the

RVFV-6 peptide and a fragment of the VSV stem. This putative

docking site is generated during trimer formation and is

compatible with RVFV-6 inhibition of VSV during fusion. Amino

acids in the primary region of interest are shown using a ‘stick’

model and are colored according to their hydrophobicity,

aromaticity, and charge: ALA, CYS, VAL, LEU, and MET are

shown in white/gray scale; PHE, TYR, TRP, and PRO in a green

scale; SER, GLN, and ASN in pink; GLU and ASP in red; and

ARG, LYS, and HIS in blue/light-blue scale.

(TIF)

Figure S3 Structural modeling of the complete EBOV
fusion trimer. This post-fusion model from EBOV Zaire was

built using as templates (a) chains J, K, and N from the experimental

structure of the pre-fusion trimer (PDB code: 3CSY) that contain

the fusion loop fragments (fragments colored white), (b) the structure

of post-fusion trimer (PDB code: 2EBO) that resolves the NHR

(yellow) and CHR (green) fragments and the linker region (cyan),

and (c) modeling de novo the C-terminal region of GP2 correspond-

ing to residues 731 to 767 (residue numbers from NBCI sequence

gi:|33860544|), colored pink with the stem fragment with high

sequence similarity to RVFV-6 shown in red.

(TIF)

Figure S4 Structural modeling of the RVFV Gc fusion
trimer. (A) Homology models for the RVFV Gc fusion trimer

were generated using as templates the experimental structures of

the glycoprotein Gc from RVFV (PDB code 4HJC), the

homotrimer of the fusion glycoprotein E1 from Semliki Forest

virus (PDB code: 1RER), and the structure of the E1 protein from

VEEV (PDB code 3J0C-chain A). The fragments at the C-termini

of the RVFV Gc fusion trimer were modeled de novo assuming that

the stem region (highlighted in red) and trans-membrane

fragments at the C-terminus both adopt a-helical conformations.

(B) Enhanced view of the region containing the fusion loops

(yellow box from panel A) showing the putative binding sites for

the stem of RVFV (residues considered relevant are shown using a

‘stick’ representation and colored green). The putative docking

sites are formed between DII domains after trimer formation.

(TIF)

Figure S5 Structural modeling of viral stem regions for
RVFV-6 inhibited virus, RVFV-6, and RVFV-6sc. The

sequences used in the comparison are: RVFV-6:

WNFFDWFSGLMSWFGGPLK, RVFV-6sc – MFLGWSFDF-

GSLWGNKPWF, ANDV: FKCWFTKSGEWLLGILN, VSV:

VELVEGWFSGWRSSLMGVLA, and EBOV: NWWT-

GWRQWIPAGIG. The atomic structures of the residues are
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shown using a CPK model. The following color code was applied:

aromatic: black; hydrophobic: gray; weakly hydrophobic or

neutral: white; acidic: red; basic: blue.

(TIF)
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